Role of USEPA in Promoting Safe, Beneficial Uses of Industrial Materials

Dr. Peter Grevatt
USEPA, Office of Solid Waste
Agricultural and Industrial Uses of FGD Gypsum
October 23, 2007

Industrial Materials Recycling

- Safe recycling of industrial materials, including FGD gypsum, can result in significant environmental benefits, including
 - resource conservation,
 - decreased energy use,
 - decreased greenhouse gas emissions, and
 - decreased ecological damage associated with materials extraction.

Primary Considerations in Beneficial Use

- Engineering and/or Agricultural Considerations
 - Is there an industrial material that can effectively substitute for a commonly used virgin material?
- Market Considerations
- Environmental Benefits
- Environmental Safety
 - What's in it?
 - How will it be used?
 - Primary uses
 - Secondary uses
 - What are the application rates?
 - Will it accumulate onsite?
 - Will it migrate offsite?

EPA's Role

- Our role in promoting recycling is to
 - Bring stakeholders together,
 - Coordinate efforts to increase safe recycling,
 - Provide our technical expertise, and
 - Provide tools.
- The Resource Conservation Challenge (RCC) is a national effort led by EPA to conserve natural resources and energy by managing materials more efficiently.
 - The Coal Combustion Products Partnership (C2P2) is a collaborative program with 160 partners to promote the beneficial use of coal combustion products.

EPA's Role: Quantifying Benefits

 To quantify the benefits of recycling CCPs, foundry sand, C & D materials, scrap tires and asphalt shingles, OSW is performing life-cycle analyses.

Coal Ash Recycling: 2006 National Data Substitution for Portland Cement in Concrete		
Amount Recycled	15 Million Tons	
Total Energy Savings	80 Trillion BTUs	
Energy Equivalent	638 Million Gallons of Gasoline	
Greenhouse Gas Reduction	3.7 Million Metric Ton Carbon Equivalents	
Greenhouse Gas Equivalent	3 Million Cars off the Road	

Source: These figures were estimated using the WARM model, http://epa.gov/climatechange/wycd/waste/calculators/Warm_home.html and are based on voluntary industry data collected by the American Coal Ash Association.

EPA's Role: Risk Assessment Framework

- OSW is developing a framework to assist state regulators and others in decision-making concerning risk related to industrial materials recycling.
- Authority to regulate non-hazardous waste has been delegated to the states.
 - States determine what industrial materials can be recycled and how.
 - New materials or new uses of familiar materials may not permitted because decision-makers do not have the resources to evaluate risk.
 - The purpose of the framework is to increase the safe, beneficial use of industrial materials by helping state regulators assess risk.

EPA's Role: Risk Assessment Framework (Cont.)

- Presents approaches for assessing suitability of industrial materials for safe recycling.
- Library of tools contains information on and links to resources that can aid in risk assessment
 - Test methods to characterize materials
 - IWEM and other groundwater models
 - Other tools

Considering Use of FGD Gypsum

Environmental Benefits

- Decreased soil erosion and
- Reduction in energy use, greenhouse gas emissions, and ecological damage associated with materials extraction.

Environmental Considerations

- Are there constituents of potential concern (e.g., trace metals) in FGD gypsum?
- What concentrations are present in FGD gypsum, and how do they compare to the concentrations in mined gypsum?
- What are the potential ecological and human health risks caused by proper or improper use?

Trace Constituents in FGD Gypsum, Mined Gypsums, and Natural Soils			
Trace Constituent	FGD Gypsum (ppm)	Mined Gypsum (ppm)	National Background in Soils Lower 25 th percentile (ppm)
Antimony	2.0 - 9.1	0.02 - 0.28	0.3
Arsenic	0.6 - 4.0	0.19 - 3.0	4.21
Cadmium	0.2 - 1.2	<2-0.5	0.19
Chromium	1.3 - 42.0	8.7 - 30.5	28.6
Lead	0.8 - 12.0	All <5	14.5
Mercury	0.01 - 1.4	0.00044 - 0.025	0.039
Molybdenum	0.5 - 12.0	All <3	0.44
Nickel	0.73 - 20.1	<4 – 11.9	11.8
Selenium	2.0 - 30.0	11.3 – 21.1	0.21
Thallium	0.6 - 2.0	All <15	0.3
Vanadium	<1 - 73.2	<2-12.7	45.9
Zinc	3.4 – 47.5	13.1 – 27.5	36.8

Sources: DOE. 2007. Unpublished data. U.S. Department of Energy; EPA. 2007. Unpublished data. Office of Research and Development, U.S. Environmental Protection Agency; EPRI. 2007. Unpublished data. Electric Power Research Institute; OSU. 2006. *Gypsum for Agricultural Use in Ohio-Sources and Quality of Available Products*. Ohio State University Extension Fact Sheet, ANR-20-05. http://ohioline.osu.edu/anr-fact/0020.html; Shacklette and Boerngen. 1984. *Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States*. U.S. Geological Survey Professional Paper 1270. Washington, D.C.: U.S. Government Printing Office; USGS. 2005. *Major- and Trace-Element Concentrations in Soils from Two Continental-Scale Transects of the United States and Canada*. Open-File Report 2005-1253, U.S. Geological Survey. http://pubs.usgs.gov/of/2005/1253/

Information Gaps

- It is important to establish acceptable product specifications for agricultural FGD gypsum.
 - Farmers need to know what they are getting.
 - FGD gypsum can be processed to reduce the concentration of heavy metals.
- Mercury concentrations are typically higher in FGD gypsum than in natural gypsum sources.
 - EPA would like to see more research on potential environmental releases from use of FGD gypsum in agriculture and other recycling applications.

Final Points

- EPA encourages the safe, beneficial use of industrial materials, including FGD gypsum.
- Product specifications could help potential users in making decisions about utilizing FGD gypsum.
- It is important to characterize and consider risk associated with the use of industrial materials.
 - There is nothing that will set the IMR effort back more than a real or perceived human health or environmental risk.
- OSW is currently developing a framework to assist state regulators and others in decision-making concerning risk related to industrial materials recycling.

