OPTIMAL MIXES
FOR CONCRETE DURABILITY AND
FOR INDUSTRY COLLABORATION

POLAND’S CCP MARKET
PROSPECTS RISE WITH EU STATUS

SERVICE LIFE MODELING
FOR FLY ASH IN CONCRETE

GEOTECHNICAL APPLICATIONS
OF CCPS IN WISCONSIN

CHROMIUM VI
IN EUROPEAN LEGISLATION
Solid Teamwork

Improve ash processing, management, distribution and marketing with Boral’s Utility Services Group. With more than 40 years of CCP management experience, Boral’s Utility Services Group provides a wide range of services – from exploring new ways to market and sell fly ash to operating and maintaining collection systems to management of environmental compliance issues. To learn more, visit us online at www.boralmti.com or call 1-800-964-0951.

Boral Material Technologies
TABLE OF CONTENTS

Message from the ACAA Chairman ... 2
Message from the ACAA Executive Director ... 5

FEATURES

Optimal Mixes for Concrete Durability and for Industry Collaboration
By Mike Thomes, Xcel Energy ... 8

Poland’s CCP Market Prospects Rise with European Union Status
By Agnieszka Myszkowska, Ekotech ... 12

Service Life Modeling for Fly Ash in Concrete
By Kevin Copeland, Boral Material Technologies Inc. 14

Geotechnical Applications of CCPs in Wisconsin
By Tuncer B. Edil and Craig H. Benson, University of Wisconsin-Madison ... 16

Chromium VI in European Legislation
By Hans-Joachim Feuerborn, VGB Power Tech .. 22

How to Use ACAA’s Website Publication Library 24

ACAA Membership Listings ... 28

Index to Advertisers ... 36

COVER PHOTO:

The breathtaking Reiman Bridge and Milwaukee Art Museum were constructed of concrete made with fly ash. These inspirational structures symbolize our members’ dedication to building bridges, engaging diverse groups in ACAA’s vision and mission. Photo courtesy Paul Westermann and ACAA Chairman Thomas Jansen of We Energies.

Summer 2006 Ash at Work • 1
This is my last Chairman’s message to the readers of Ash at Work magazine. My two-year term as chairman concluded at the ACAA meeting in Milwaukee, Wisconsin, June 4–6, 2006. It is fitting that my term ended in my hometown for more than obvious reasons—bridges.

ACAA members attending the Milwaukee meeting noticed that some of the streets in downtown Milwaukee are not aligned where they meet at river, and the bridges are on an angle. The original settlement on the east side of the Milwaukee River was known as Juneautown, and the later development on the west side was known as Kilbourntown. The rivalries of the two groups and the parochial interests of the west side leader, Byron Kilbourn, led to some strange urban planning, and ultimately the Bridge War of 1845. Each settlement purposely built their streets in locations where they would not be aligned with their rival’s streets on the other side of the river, consequently making it difficult to build bridges to connect the settlements, and according to their rationale, protect their business interests on their side of the river.

For years, the only means to get from one side to the other was by ferry. It was not the most efficient means of commerce; nonetheless, many residents crossed the river for personal and commercial reasons. Finally, in 1840, the Wisconsin legislature required Milwaukee County to build a bridge to connect the two areas. Subsequently three more bridges were built in the next three years after the first proved to be convenient. Neglecting the general interests, Kilbourn was outraged and continued to oppose the construction of bridges and made resolutions to remove parts of the bridge on his west side of the river. Some west side settler’s worried that thisimpinged their independence and occasionally vandalized the bridges. On the evening of May 7, 1845, after much inebriated debate in the Kilbourntown taverns, a drunken group of westsiders aimed a canon at the bridge and dropped one of the spans in the river. The conflict escalated when east side vigilantes destroyed other bridges to isolate the westsiders. The violence that ensued demonstrated the absurdity of the conflict and “it became increasingly obvious that Milwaukee needed more access, not less; more settlers, not fewer; more cooperation, not open warfare.” The groups reconciled and later that year they agreed to a city charter that was approved in 1846.
Since 1976, The SEFA Group has been a partner in some of the country’s most successful coal ash utilization and management programs.

Today, we are developing innovative technologies that will change the face of the Fly Ash industry. Our newest processes in Thermal Beneficiation are efficient, economical, and designed to meet the needs of our utility partners.

We believe that successful business is based on superior customer service and quality products, and we are excited about the future we’re developing for our industry.

South Carolina
217 Cedar Rd
Lexington, SC 29073
Toll Free 888.339.5EFA

Tennessee
PO Box 1311
Greeneville, TN 3774
Toll Free 800.422.5940
I am pleased to report that ACAA did not have any bridge wars. In fact, in the last few years, we’ve built more bridges to connect with CCP stakeholders and organizations with mutual interests. Our streets may not always be perfectly aligned, but we made connections that, from any angle, fulfill our mission and help to achieve our goals. One such angle is resource conservation that bridges the interests of ACAA, EPA, the recently established Industrial Resources Council, and the Green Highway Partnership. The ACAA made great strides in building networks, making connections, and promoting CCPs. This magazine continues to generate great interest and growing readership. We now have a monthly e-newsletter that provides relevant, up-to-date information. ACAA recently hired Melissa Burke, a highly skilled and experienced public relations and communications professional. Melissa, teamed with Mike MacDonald, will speed up the delivery of promotional literature, workshops, and technical resource bulletins. Our website continues to improve with a photo library and a comprehensive archive of technical literature.

I was extremely fortunate to start my duties with an association that had a strong financial and administrative foundation due to the leadership of my predecessor, Harry Roof. And I have much appreciation for the guidance and encouragement from past chairmen Joel Pattishall and Ted Frady. Joel was partially right when he told me that “you will finally figure out all the administrative stuff and then your term ends”—well I have yet to figure it all out. Thankfully, I had the pleasure to work with ACAA’s dedicated, proficient and energetic staff: Annely Noble, Melissa Burke, Mike MacDonald, who took on a tremendous load with determination, and Dave Goss. They made my job easier, and they made ACAA better. ACAA is very fortunate to have Dave Goss as its executive director. I receive many compliments from our members, from other associations, from customers, and from government agencies that tell me what I now know so well, that Dave is a doer and a leader. Many thanks go to the committee chairs and all the volunteers that worked on projects, made presentations, worked trade shows, wrote technical bulletins, shared resources, and served on committees. Countless thanks to my wife Debbie. And thank you We Energies and my co-workers for letting me serve in this position.

Best wishes to our new chairman, Al Christianson, who ably served as vice-chair during my term, and to Mark Bryant, the new vice-chairman. You have my support.

I am proud of ACAA’s accomplishments, because it was a team effort. I am proud of ACAA’s members and staff. I am most proud of our cooperation. We are bridge builders.

Footnote:
1. Historical information and quote from John Gurda, The Making of Milwaukee; Published 1999, Milwaukee County Historical Society.
We all realize the importance of being effective communicators. Nevertheless, communications are fraught with subtleties. Depending on your background and experience or cultural perspectives, a message may be interpreted in completely different ways even within the same audience. How does an organization address these complexities when it has both a diverse membership and a varied audience?

One way is to hire a professional, trained in communications and public relations, which is exactly what ACAA has done. Melissa Burke joined our staff on April 10, to serve as the association’s communications coordinator. Melissa is accredited in public relations, with a degree in journalism. Her 13 years of industry experience includes more than six years with engineering giant CH2M Hill, headquartered in Denver. Melissa will work closely with the Communications and Marketing Committee, the officers and other volunteers in developing and delivering ACAA’s many messages.

In late April, an article appeared in a number of newspapers promoting a new process that will use fly ash to make bricks. The technology, developed by Dr. Henry Liu, is a potential alternative to disposal. Dr. Liu recently received a $500,000 grant from the National Science Foundation to further study ways to make weather-resistant bricks out of fly ash. He hopes to bring the product to market within two years. The message sounds positive and could make many people aware of a potential new benefit derived from CCPs. The snag, however, is that the reporter chose some less than “comfortable” language for the lead and headline. His introduction states, “Coal-burning power plants spend millions disposing of fly ash, a fine powder loaded with mercury, lead and other toxic chemicals.” Following Melissa’s advice, ACAA contacted the reporter the day after the articles appeared and complimented him for covering our industry and promoting a new use for fly ash. We offered our resources to him in the future should he wish to write additional articles on other uses for CCPs. We also indicated we could provide him with accurate chemical, environmental and economic data on the many uses for CCPs. Rather than confront him about his choice of terminology and descriptions (which was done separately by other sources) we established a positive working relationship that may pay dividends in the future.

One of Melissa’s tasks will be to identify opportunities to develop stronger relations with representatives of the media, to more accurately promote the goals of our association and industry. Rather than be confrontational, communications are typically more productive when they are supportive of viewpoints that may not coincide exactly with our own. However, in educating others with differing viewpoints, we can often create allies and new supporters. This is one way to reduce barriers and build collaborative relationships—a positive for all engaged in this industry.

EFFECTIVE COMMUNICATIONS IS VITAL

By Dave Goss, American Coal Ash Association

ATTENTION
TWO TERMINALS AVAILABLE

Do you want to distribute fly ash, cement or lime in New England’s booming economy?

- Terminals are strategically placed in North Haven, CT and Allston, MA.
- Terminals are located on CSX rail and served 5 days/week by CSX.
- Each terminal is fully functional, silos, scale, dust collection and 3 phase power onsite.
- Distribute your bulk material directly into industry, (management services available if necessary).
- Lease or own the terminals.

Contact Norma Smith for more details, 866-442-5292.
"Since the installation of the system in 1995, we have replaced one 4-foot long section of the Airslide fabric. Other than that, the system is nearly maintenance free."
- Glenn Outland, Plant Engineer, Roanoke Valley Energy Facility, 2004

AIRSLIDE™/ FK™ PUMP SYSTEM

- Nearly maintenance-free
- Capital cost reduced by as much as 50%
- Continuous product removal from all collection hoppers

FK Pump with 3-piece screw reduces maintenance costs!

FULLER-KINYON™ PUMP

- Rugged construction, continuous-duty
- Sizes for 5 to 500 TPH
- Suitable for ash temps up to 400° F
- Hundreds of fly ash installations since the 1920's

FLSmidth Inc.
Tel: 1-800-523-9482
Fax: 1-610-264-6170
www.fls-pt.com
ASH MARKETING APPLICATIONS

FLY ASH INTERCEPT
- Capture ash dry from existing plant ash handling systems

LONG TERM DOME STORAGE AND AERATED RECLAIM
- No moving parts in dome
- Domes with over 30,000 ton capacity

SILO RECLAIM AND TRUCK LOADOUT
- Regulated reclaim from silo
- Can include lump breakers and tramp-metal traps

PROCESS CONVEYING
- Driven by PD-blinders or compressors
- Up to 5000 ft distances
- Standard sched. 40 pipe

CERAMIC FEEDER
- Steel / iron construction with ceramic tile and hardened tips
- Feed rates up to 50 TPH

“We can’t say enough about the reliability of this valve. Since its installation 14 months ago, it’s been operating 24/7, in temperatures of 250º-300º F, processing upwards of 170,000 tons of flyash — without repair. That’s dependability.”
~ Butch Houseknecht, Operations Manager, Separation Technologies, Inc. (STI) Baltimore, Maryland
OPTIMAL MIXES
FOR CONCRETE DURABILITY AND
FOR INDUSTRY COLLABORATION

By Mike Thomes, Xcel Energy

In its Guide to Durable Concrete, ACI Committee 201 defined durability as concrete’s “ability to resist weathering action, chemical attack, abrasion, and any other process of deterioration.” Such processes include corrosion of reinforcement, freeze-thaw damage, alkali-aggregate reactivity, and carbonation. In each of these cases, liquids and gasses penetrating into the concrete initiate the deterioration. Durability can be enhanced by reducing permeability of the concrete to movement of liquids and gasses into and through the concrete.

If you were to list the most challenging of structures to achieve concrete performance and durability, the “acid test” might be cast-in-place, post-tensioned, outdoor parking ramps in Minnesota. Given Minnesota’s dynamic weather variables, these reinforcement-packed structures will be stressed by all the processes of deterioration listed above. Minnesota’s weather has the further effect of abbreviating the construction season, thus creating fast-paced construction scheduling and pressure on concrete finishing and curing practices. Unfortunately, the spectrum of ramp structures in Minnesota provides ample evidence of room for improvement in concrete durability and performance.

The Minnesota Concrete Council recognized this construction challenge. The MCC is a non-profit organization created to promote cast-in-place concrete by educating its members on technical practice, sharing the latest scientific investigation and research, and by organizing the efforts of its members. Its membership reflects the design, construction, and support industries associated with reinforced and post-tensioned concrete construction in Minnesota. This broad-based, industry-wide representation suggested MCC was well positioned to study this durability issue and implement strategies. MCC’s Technical Committee was aware of the wealth of recent research on “High Performance Concretes,” generally involving the incorporation of mineral and chemical admixtures to enhance the durability and strength of the concrete. But there is not a universally standard mix design or proportion for “HPC.” Mix proportions for HPC are selected to meet: 1) specified performance criteria, 2) using locally available materials, and 3) good construction practices.

MCC’S OPTIMUM DURABILITY STUDY

Under the leadership of Mike Ramerth, a principal with the structural engineering firm of Meyer, Borgman, and Johnson and chair of MCC’s technical committee, a task force was assembled to respond to the HPC mix proportion issues listed previously. The task force recognized that the cementitious content, plus the water-cementitious ratio should be as low as reasonable to reduce potential cracking due to drying and thermal shrinkage. But durability is also significantly influenced by properties of the hydrated cement paste. Thus further reductions in concrete permeability and increases in its compressive strength would be assessed via integration of mineral admixtures: slag cement, micro silica, and (of course) fly ash. Both ASTM C 618 Class C and Class F fly ashes are locally available and would be part of the study. The MCC was further motivated by related opportunities for resource conservation and cost control.

Phase one of the MCC’s study was to assess results of various HPC mix designs to performance parameters. The task force established the following Performance Specification criteria:

Mix Design and Plastic Properties:
- Total cementitious < 658 pounds/cy
- Water- cementitious ratio < 0.42
- Aggregate - well-graded limestone; max. size 1.5 inch
- Air entrained to 6% (+ 1%)

Time of Set:
- Measure via ASTM C 403

Compressive Strength:
- Measure via ASTM C 39
- Objective: $f'_c = 3000$ psi @ 30 hours
- $f'_c = 6000$ psi @ 28 days

Rapid Chloride Permeability:
- Measure via ASTM C 1202 (Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration)
- Objective:
 - 6 months < 1000 coulombs
 - 12 months < 500 coulombs

Scaling Resistance:
- Measure via ASTM C 672 (Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals)
- Objective:
 - Blended mixes perform equal to or better than control mix using only portland cement
No landfilling.
No added emissions.
No lost combustibles.
No transportation expense.
No extra fuel cost increases.

Separation Technologies

proudly introduces nothing.

Introducing Carbon Return™ from the industry leader in processed ash management.
A 100% environmentally friendly ash management solution, Carbon Return is really simple. We process your fly ash and return the high-carbon component to you for use as a supplementary fuel source. What’s really amazing is that this carbon can be reprocessed and burned like coal until there is nothing left. For you that means no added processing emissions, no landfilling, no lost combustibles, no transportation expense, and no lost fuel source. Call us at 1-888-4PROASH for more information.

©2005 ProAsh* is a registered trademark of Separation Technologies LLC, A Titan America Business.
Rating Codes:
- 0 – No Scaling
- 1 – Very light scaling
 (1/8” max. depth, no coarse aggregate visible)
- 2 – Slight to moderate scaling
- 3 – Moderate scaling (some coarse aggregate visible)
- 4 – Moderate to severe scaling
- 5 – Severe scaling
 (coarse aggregate visible over entire surface)

Shrinkage:
- Measure via ASTM C 157 (Length Change
 of Hardened Hydraulic-Cement Mortar and Concrete)
- Objective: average drying shrinkage length change
 (6 months) < 0.050%
- No autogenous or plastic shrinkage cracking

The table on the next page summarizes results of 16 cementitious blends tested according to the performance parameters listed above. Color-coding in the table is an attempt to signal whether the performance parameters were accomplished, with the increasingly darker colors suggesting improvement. On balance, it appears that the quaternary blends of 20 percent slag + 20 percent fly ash (either F or C) + 1 percent micro silica show top-notch promise.

In the spring of 2006, MCC will accomplish phase two of its durability study–actual placement of test panels in the field. Test panels will feature the quaternary mixes to verify whether their highly encouraging lab test results translate to the real world. In addition to durability factors, panel placement will also evaluate mixing, placing, finishing and curing requirements. This evaluation will include enlisting the “calibrated backs” of experienced concrete finishers. An important factor in assessing the commercial acceptance of mixes containing relatively fine pozzolans is whether their lack of bleed water and “sticky surface” features create workability problems.

OPTIMUM DURABILITY?

Phase one results from MCC’s Optimum Durability study are confirming the increasingly conventional wisdom that HPC blends using fly ash in combination with slag and silica fume interact in a symbiotic way to enhance concrete durability. This corresponds with an opportunity to enhance the value of concrete—and fly ash—for everyone.

OPTIMUM COLLABORATION?

Possibly the most gratifying outcome of MCC’s study is that it successfully continues the organization’s mandate of continuing education and solving technical problems of its members. One of the best ways to adopt construction innovations is to enlist the dynamic involvement of leaders in the local market using locally based resources. The MCC has been able to obtain the collaborative involvement of highly qualified and experienced professionals in what is a highly competitive industry. It is exciting to participate with professionals who, on one day will be staring each other down during a bid opening,
then the next day could be working collaboratively and enthusiastically to address opportunities to mutually enhance their product.

What an amazing industry!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hours:minutes</td>
<td>psi - 1 Day</td>
<td>psi - 28 Days</td>
<td>Coulombs - 6 months</td>
<td>% change - 6 months</td>
</tr>
<tr>
<td>1 PC (Control)</td>
<td>3:33</td>
<td>3870</td>
<td>7820</td>
<td>1281</td>
<td>0.050</td>
</tr>
<tr>
<td>2 30S</td>
<td>4:39</td>
<td>2495</td>
<td>7650</td>
<td>1066</td>
<td>0.053</td>
</tr>
<tr>
<td>3 30S - 1MS</td>
<td>5:00</td>
<td>2580</td>
<td>6910</td>
<td>606</td>
<td>0.057</td>
</tr>
<tr>
<td>4 30S - 3MS</td>
<td>5:50</td>
<td>2635</td>
<td>9040</td>
<td>620</td>
<td>0.040</td>
</tr>
</tbody>
</table>

5 30FA	4:45	2240	7230	396	0.068
6 30FA - 1MS	5:15	2300	7980	305	0.050
7 30FA - 3MS	5:15	2300	7980	305	0.050
8 20FA - 20S	4:37	2470	8825	386	0.061
9 20FA - 20S - 1MS	4:41	2490	8915	292	0.061
10 20FA - 20S - 3MS	4:45	2290	8735	263	0.052

11 30FA	4:20	2470	7770	590	0.065
12 30CA	4:30	2490	7800	955	0.056
13 30CA - 3MS	4:40	2195	8093	876	0.056
14 20CA - 20S	4:05	2150	8960	347	0.050
15 20CA - 20S - 1MS	4:10	2460	9145	445	0.050
16 20CA - 20S - 3MS	4:14	2895	9275	313	0.064

Color Key: Need Improvement OK Results Good Performance Yes!

Note: Complete Phase 1 data available at www.mnconcretecouncil.org

1 ACI Committee 201, “Guide to Durable Concrete (ACI 201. 2R-01),” American Concrete Institute, Farmington Hills, MI 2001, pp.2 and 14.

POLAND’S CCP MARKET PROSPECTS RISE WITH EUROPEAN UNION STATUS
By Agnieszka Myszkowska, Ekotech

Road and highway projects in Poland are on the rise and plentiful. In anticipation of European Union membership, the country enacted a series of reforms categorizing roads and assigning government oversight. The Road Law Act of 2000 established the Office of General Director for National Roads and Motorways (GDDKiA). The GDDKiA has plans to build a nationwide system of highways linking Poland’s largest cities with each other and Western Europe by 2009.

While few road projects in Poland currently use Coal Combustion Products, the potential market is huge. Power plant operators are compelled by environmental regulations to find CCP uses. The nation’s output is 15 million tons of CCPs a year—6 million tons are brown coal ash and slag. Hundreds of additional tons are available at disposal sites.

Government standards now exist for CCP uses in concrete, stabilization and base course work. Polish company, Ekotech, has identified Pątnów, Belchatów and Turów as the most suitable plants for binders ideal for road aggregate mixtures. The company has plans to construct facilities at each plant able to process approximately 130,000 tons of ash into binders, expandable to 300,000 tons.

Ekotech studies reveal ash produced at the Pątnów power plant can reach compression strength of 3,626 psi. For highways, the standard value is approximately 1,500 psi. Sand, gravel or slag are added to the binder in various proportions, according to local availability, and adjusted for different road classifications.

The Sochaczew Bypass Project constructed April to August 2003 featured one of Europe’s largest applications of silicate aggregate. The aggregate (250,000 tonnes) incorporated bottom ash produced at the EWSA Power Plant in Warsaw. Ekotech managed delivery from plant to project site. They secured administrative approvals for transporting bottom ash from the EWSA plant’s landfill. The ash was carefully weighed and transported by truck to the aggregate processing site, where samples were taken to the contractor’s laboratory and tested for strength. When temperatures soared in May, water was added to regulate the mixture’s humidity. Small amounts of dry Fluidized Bed Combustion fly ash served to further adjust moisture content. Once at the construction site, aggregate was unloaded, weighed again, then spread in layers about a foot deep and compacted. The degree of compaction and bearing capacity were monitored continuously.

Quality and reliability demonstrated by the Sochaczew Bypass Project and others in Poland are fueling national and international interest in CCP utilization. Local, regional and national agencies are in the midst of forming standards and policies; road construction is surging to historic levels; producers are more vigilant than ever in seeking solutions—this market is primed for growth!

For more information, please contact: agnieszka.myszkowska@ekotech.pl

This express road near Warsaw incorporates fly ash and slag concrete.
Mineral Resource Technologies
Providers of quality fly ash, bottom ash and pozzolanic products for the construction industry

- The industry’s most extensive network of distribution and terminal assets
- Engineering, design, and construction services
- Total CCP Program Management
- Full spectrum of on-site ash handling operations
- State of the Art R&D Technology Center
- History of successful fly ash products development with in excess of 10 patents
- Quality Control/Quality Assurance
- Technical and customer service
- A leader in promoting the CCP industry

Businessdevelopment@mrtus.com
1-800-615-1100
Computer modeling offers fly ash marketers a way to raise awareness and emphasize life cycle, economic and other attributes of fly ash applications. Of particular interest is the ability of concrete to withstand aggressive environments such as deicer salt application, marine exposure, sulfates in soil or groundwater, or aggressive chemicals and alkali silica reaction. Near the coastal areas, concrete experiences particularly aggressive environments in the form of saltwater exposure and spray, as well as sulfate attack. At higher elevations exposure comes from migration of deicing salt ions (i.e. chloride) into bridge decks and graded pavements.

While strength is traditionally a primary design factor for portland cement concrete structures, concrete durability is a much more important to long term service life and serviceability of structures. Because virtually all durability aspects of concrete are improved with a reduction in permeability, the use of fly ash improves concrete durability. In addition, concrete water demand is typically reduced when using fly ash leading to a lower water-cementitious ratio.

These two key properties lead to concrete with a longer life expectancy. Corrosion of reinforcement is slowed dramatically with a reduction in permeability, and concrete resistivity is increased, leading to a slowed corrosion propagation rate. By consuming free lime, fly ash lessens the potential for sulfates from soil and/or groundwater to attack concrete. Finally, fly ash will consume excess alkalis, reducing potential for deleterious alkali silica reaction.

The Life 365 model is one example of a life cycle cost prediction model. It was originally created as an industry standard model to predict ingress of chloride in structures and mitigation technologies for controlling corrosion. This model allows users to input the actual diffusion data for a given mix design. Users can also select pre-set modifications such as fly ash to produce high performance concrete, or such corrosion inhibitors as stainless steel, epoxy coated reinforcement, or application of sealers or membranes.

FLY ASH & SERVICE LIFE PREDICTION

When maintained in a saturated condition, or relative humidity exceeding 80 percent, the pozzolanic reaction continues for several months, and fly ash concrete continues to develop a more refined pore structure. It is assumed that no initial drop in diffusivity (D_{0}) occurs with the incorporation of fly ash; however, the diffusion decay constant (m-value) increases with increasing fly ash content. A concrete mix water demand reduction of 5 percent is typical for most fly ash sources, and in some cases is conservative. This change in water to cementitious ratio should be incorporated into mix input parameters for Life 365 to better simulate real world use of fly ash in concrete.

As can be seen in the above figure, the use of fly ash will significantly slow the chloride ingress rate, leading to improved serviceability of structures. The introduction of fly ash at 20 percent replacement of cement extends the predicted time to corrosion from 13 years to 26 years. Likewise, an increase in fly ash content from 20 percent to 40 percent increases the expected time of first repair from 32 years to 60 years.

Structures immediately exposed to aggressive agents, such as offshore bridges and piers in the marine splash zone, require a greater reduction in concrete permeability at early ages. In these cases, prioritization should be given to use of highly reactive pozzolans such as silica fume, ultra fine fly ash, metakaolin, or rice husk ash. The proper combination of these materials with traditional fly ash often leads to synergistic effects in overall protection from ASR, sulfate attack, and corrosion.

As can be seen in the following figure, when concrete is exposed at early age to an aggressive environment, such as a marine splash zone, the use of highly reactive pozzolans proves useful. These materials...
are typically higher cost materials and thus the initial cost should be increased accordingly when conducting service life cost calculations. In this case, the inclusion of 8 percent ultra fine fly ash, in conjunction with 30 percent traditional fly ash, increases time to first repair from 24 years to 70 years.

THE FUTURE OF MODELING

Other more recent computer based service life models attempt to improve on some of the perceived shortcomings of Life 365. One such model, STADIUM, predicts the movement of other ions in addition to chloride, including sulfate, hydroxyl, sodium, potassium, magnesium, and others, as well as several solid phases. The transport mechanism in this model is not limited to diffusion of ions in saturated conditions. One notable feature of STADIUM is its ability to account for movement of ions, and to adjust for coupling due to changes in concentration of various ions. As needed, this model will adjust the amount of predicted ions in solution in keeping with maximum solubilities of the respective compounds.

ACI 365 is close to releasing a state-of-the-art report on the use of Life 365 for service life modeling. Recent improvements to this program include a statistical based approach to predicting service life of chloride-laden structures. Several other service life modeling programs exist, and have been developed and verified to various extents. In coming years, more of these products may be incorporated into structural evaluations, for predicting serviceability and potential for premature concrete deterioration and cracking.

Regardless of the model used to predict serviceability, the prudent use of fly ash in conjunction with portland cement makes sense. Decades of in place performance have verified the effectiveness of fly ash in improving serviceability in aggressive environments. Depending on the exposure conditions, the optimum combination of cement and fly ash may be determined which yields the required strength and durability performance. To ensure the full life cycle use of a concrete structure based on theoretical or real world exposure, the proper selection of constituent materials is critical.

CONCLUSION

The benefits fly ash provides concrete are becoming more commonly held throughout the concrete industry by owners, engineers, architects, and contractors. In order to capitalize on this enormous benefit, concrete designers need to be more aware of the role fly ash plays, and how service life may be increased with the proper use of fly ash in concrete. While industry associations such as Silica Fume Association, Slag Cement Association, and Corrosion Inhibitors Association are incorporating these models to demonstrate the benefits that their respective products provide to service life, fly ash marketers have not yet united in their efforts to promote their material as a value added product. While fly ash is an obvious choice from a green building perspective, the life cycle benefits should be stressed to owners and designers with help of these programs.

[Legend]

Chloride Content (% wt conc)

Concentration-Time at Cover Depth

Legend

Fly Ash

UFFA & Fly Ash

2.36 in clear cover
Many CCPs have desirable properties and leach contaminants at such low concentrations that their use as geo-materials in construction applications should be seriously considered. There also has been a shift in societal attitudes resulting in strong interest in developing beneficial re-use markets for industrial by-products in the context of sustainable development. Ideal applications for CCPs exist in the transportation, construction, and environmental industries, where large volumes of earthen materials and aggregates are used each year. In fact, fly ash, bottom ash, and flue gas desulfurization materials have been or are in the process of being beneficially used as highway construction materials.

We would like to give the gist of our journey through CCP geotechnical applications research with case histories from Wisconsin.

STH 60 WISCONSIN – STABILIZATION OF SOFT SUBGRADE WITH FLY ASH

Our main effort started with a spark from industry when LaFarge North America (Mineral Solutions in those days) and two power companies (Alliant Energy and Xcel Energy) came together to help us establish the University of Wisconsin Consortium for Fly Ash Use in Geotechnical Applications (FAUGA) in 1999. While fly ash stabilization of soils was known for many years, it was not used in any Wisconsin state highway projects (except perhaps for demonstration purposes). Designers had numerous questions and concerns about CCP use, and unless they had some solid data in hand they were not going to start using CCPs in constructing or reconstructing expensive state highways. Providing this data became a mission of FAUGA.

Wisconsin has poor subgrade soils covering nearly 60 percent of the state (sils and clays), which are very soft when wet. These soils pose significant construction problems and costs, especially during wet construction seasons. By the time we completed our first demonstration project as part of the reconstruction of Wisconsin State Highway (STH) 60 between Lodi and Prairie du Chien (below), the state engineers and the contractor were convinced that fly ash stabilization is a viable cost-effective option for subgrade stabilization in Wisconsin.
We also used bottom ash as a granular working platform in STH 60 with great success.

We are currently monitoring STH 60, as well as portions of STH 32 and US Highway (USH) 12 where the subgrade was stabilized with fly ash. Long-term performance is being evaluated. Frost impacts to the stabilized layer are being assessed and groundwater monitoring is being conducted. We have been monitoring the stiffness of working platforms used in STH 60 for more than five years. Initially, the fly ash stabilized section had comparable stiffness as a control section constructed using crushed rock; however, since construction, the section stabilized with fly ash has continued to gain stiffness and now is markedly stiffer (about three times) than the control section built with crushed rock.

Since 2000, there have been six state highway projects in which fly ash stabilization using Class C fly ash was adopted. Meanwhile, use in county and city highways, airfields, parking lots, etc., has multiplied. Today, along with the concrete industry, nearly all of the Class C fly ash in Wisconsin is being used in construction. These projects were beneficial because removal and replacement of the soft subgrade with natural crushed rock was avoided. The only material brought in was fly ash (mixed at a rate of 10 percent), allowing use of the native subgrade to build a firm working platform. The fly ash process also saves time, which is crucial when there is a small window for construction during a rainy construction season. Once the fly ash mixing and compaction are achieved, there is a sealed surface unaffected by rain.

 ENVIRONMENTAL ASSESSMENT

Unlike natural earthen materials, the potential for pollution by industrial products has to be assessed in the context and environment of a given application. Passage of Wisconsin Administrative Code NR538 Beneficial Use of Industrial By-Products has encouraged beneficial use of industrial by-products and simplified the permitting process. According to NR 538, byproducts are classified into "categories" (Categories 1-5) that define applications where the byproducts can be
Our fly ash solution isn’t just

IT’S GREENER.

Created by a power plant engineer

Fully adaptable to changing environmental regulations

Results in a lower-emission, more sustainable end product

Our patented Carbon Burn-Out (CBO™) technology is the only zero-waste, ammonia-free, low-carbon process on the market, making it the most environmentally friendly solution available for utilities to recycle fly ash.
“The CBO ash will provide us with a consistent quality material that will help us to provide a superior quality product for our customers.”

Michael Van Sickel
General Manager, Bransome Concrete, Inc.

better than the competition’s.

To learn more about our scalable, proven fly ash technology, call 1.866.9FLYASH (935.9274) or visit progressmaterials.com.

PMI
A Progress Fuels Company
used. Byproducts are assigned into categories based on the concentration of potential contaminants from elemental analysis and/or from water leach tests (i.e., ASTM D 3987).

Parallel to our work on stabilization, we have also assessed the leaching characteristics and environmental suitability of a wide variety of fly ashes and their mixtures with various soils. We built pan lysimeters under pavements where fly ash was used to monitor the quantity of water percolating from pavement systems and contaminants that may be in the water (photo above). We have currently eight pan lysimeters in pavements in Wisconsin and Minnesota under CCPs (fly ash or bottom ash) along with lysimeters placed beneath control sections without CCPs. To the best of our knowledge, these are the only field leachate collection efforts currently underway in pavement systems where CCPs are used.

A user-friendly computer model (WiscLEACH) was developed to predict the maximum concentration of chemicals in groundwater adjacent to roadways using CCPs for stabilization or in granular layers. Analyses with WiscLEACH showed that in most cases where fly ash is placed above the groundwater table, impacts to groundwater are negligible.

Please visit our website for more information:
http://geoserver.cee.wisc.edu/FAUGA
GATX owns or manages over 165,000 railcars of all types, as well as over 800 locomotives, and can supply the equipment you need in North America or Europe.

GATX provides railcars, locomotives, management and maintenance services to meet the industry’s increasingly demanding fleet requirements. GATX Rail's operational capabilities are complemented by financial expertise and resources to help you achieve your financing objectives and meet your equipment needs. And as a partner in the Responsible Care® program, we are committed to the protection and safety of our employees, the environment and our customers.

For more information: 312-621-6200 or visit www.gatxrail.com
CHROMIUM VI
IN EUROPEAN LEGISLATION

By Hans-Joachim Feuerborn, VGB Power Tech

As of January 2005, the marketing and use of cement and cement containing preparations is restricted to those with a maximum amount of 2 mg/kg of soluble chromium VI related to the total dry weight of cement. The limit value shall not apply in closed, fully automatic manufacturing processes where skin contact with cement can definitely be excluded. The restriction is based on the European Directive 2003/53/EC. With the directive the limit value of 2 mg/kg was introduced for all cement and cement containing preparations, leaving open the definition of a suitable test method and responsibility for proving the requirement.

Since 1950, it has been well known that chromium VI from cement may cause so-called chromate dermatitis—a serious skin disease, in common parlance also called “bricklayer scabies.” Therefore, national or branch specific regulations were introduced to protect workers who may come into contact with chromium VI containing cement bound mortar and concrete. The general opinion was that only those workers who processed the building material containing cement by hand, who did not pay attention to the warning and safety instruction and who, in general, treated the building material inappropriately, were exposed to increased risk of chromate allergy. In the 1980s, regulations for reduction of the chromate content of cement below 2 mg/kg were introduced in all Scandinavian countries. In Germany, the industry agreed to branch specific regulations for bagged cement and mortars with a limit value of 2 mg/kg, referring to the total weight of cement for bagged cement and to the total weight of the binder for bagged mortars.

Reduction of chromate content in cement is managed with the addition of iron (II) sulphate, a by-product from Titandioxide production, as a reducing agent. As the effectivity of iron (II) sulphate is reduced if stored at higher temperature and moisture the storage in proper conditions is of great importance for bagged products. Furthermore, to guarantee the reducing potential iron (II) sulphate is added with surplus. Nowadays also tin (II) sulphate, which is not as sensitive to temperature and moisture as iron (II) sulphate, is available as a reducing agent, but at higher cost.

Chromate in cement, blended cement and concrete originate from ordinary portland cement and possibly fly ash and other compounds used for producing cement and concrete. The chromate content of fly ash is much lower than that of cement and normally the criteria of 2 ppm is met. Nevertheless, the possible contribution of fly ash to soluble chromate in mortar and concrete has to be taken into account. For normal fly ash concrete the requirement is met if a chromate reducing agent is used because the surplus of reducing agent added to the cement reduces also the small amount of chromate coming from fly ash.

A pending question was the missing definition of a test method of chromate in cement containing preparation. Existing test methods for chromate were based on testing powders or mortars with different water-solid ratios, mixing/extraction times and temperatures of the eluent. In Germany, the test method for analysing the chromate content as defined in the technical regulations for dangerous substances (TRGS) 613, is based on a water-solid ratio of 4-1 with a shaking time of 15 minutes. Other test procedures for waste or soil are based on water-solid ratios of 10-1 or 15-1 with shaking times of one hour in cold water or two hours in boiling water, respectively. Comparative tests showed higher results of chromate content with increasing water-solid ratio. In Denmark, with the Danish standard DS 1020 a test procedure was introduced to test the chromate content of cement by filtration of a freshly produced mortar with a water-cement ratio of 1-1.

In 2003, the Technical Committee 51 of CEN (Comité Européen de Normalisation) CEN/TC 51 “Cement and Building Limes” started work on a European standard for the determination of water-soluble chromium (VI) content of cements. In October 2004 CEN published the draft standard prEN 196-10 “Methods of testing cement - Part 10: Determination of the water-soluble chromium (VI) content of cement.” The test method has drawn heavily on the Danish standard DS 1020 with consideration of existing test methods in France, Germany and the United Kingdom. The test method defined in this standard refers to the filtration of a freshly produced mortar with a water-cement ratio of .5 and the photometric analysis of the filtrate. In addition, a system for the evaluation of compliance of cement is defined. The standard is expected to come into force in 2006.
Synthetic Materials (synmat) specializes in the dewatering of synthetic gypsum slurries to produce gypsum cake. Synmat is involved in all aspects of synthetic gypsum production, marketing and transportation. By taking ownership of the gypsum in slurry form and providing the capital for the gypsum dewatering facility, Synmat eliminates gypsum production risk from the utility and meets the needs of our customers in gypsum board, cement and agriculture.

P.O. Box 87, 244 Old Highway 149
Cumberland City, TN 37050
Telephone (931) 827-4075
Fax (931) 827-4125

info@synmat.com
www.synmat.com
A

CAA has been working over the past few months to improve both its website photo and publication libraries. The photo library, which now includes more than 500 pictures, gives members the ability to supplement their Power Point presentations and technical papers. Although structurally completed, the photo library will continue to have more materials added. The next effort, the topic of this article, is to grow and enhance the website publication library.

The publication library offers members, at no cost, information search and download options, from over 500 publications. The goals are to increase the number of available publications to 1,800, and to modify the user search options for more efficient and quicker identification. This article begins the process of improving the library function by explaining how to make better use of its search capabilities. Members are asked to contact the staff if they have questions or can offer suggestions for further improving the library.

HOW TO USE ACAA’S WEBSITE PUBLICATION LIBRARY

WEBSITE PUBLICATION LIBRARY ACCESS

ACAA members accessing the library are required to have an ACAA issued password. Members wanting to add personnel to their organization’s access list can do so by simply phoning or emailing ACAA and providing contact information.

Access is gained by first clicking on the “Members” link option on the ACAA website homepage (www.acaa-usa.org). Once the “Welcome Members!” page opens, click the menu option “Library.” The resulting window provides for selecting either the Photo Library or the Publication Library. Clicking the Publication Library option results in the window (below) displaying five search option fields and a list of subject categories. The remainder of this article details how to use these options.

OVER 9000 HOURS OF TESTING ON OUR IMPROVED POWDER COATING

Columbian TecTank, the dry bulk industry’s leading manufacturer of bolted and factory-welded silos, introduces—Trico-Bond EP™—our new and improved modified epoxy powder coating.

This highly-engineered, factory-applied, thermally-cured multiple resin coating has undergone extensive field and laboratory testing. In fact, we spent five years developing this exclusive coating before we were satisfied with the results!

Look for improved weatherability by asking for our optional clear coat exterior coating. You will achieve a virtual automotive finish, extending your color and gloss retention.

The best tanks with the best coatings for all of your dry bulk storage needs are engineered and fabricated in our ISO 9000 Quality Certified facilities.

SEARCHING FOR PUBLICATIONS OR TOPICAL INFORMATION

• Using the Search Option Fields: Search option fields offer the ability to look for a specific publication by title, several publications by a particular author or organization, and a number of unrelated publications containing references to a single topic. Chart 1 describes how to use each of the search options, to include examples and special comments.

• Using the Subject Category List: This option allows the user to more quickly find publications falling into a particular subject area. It will be changed periodically when listed subjects are found to be too general and it is more beneficial to break out the subject into specific subsets. Chart 2 describes instructions for searching, entry examples and comments.
Chart 1. Search Option Field Instructions

<table>
<thead>
<tr>
<th>Search Option*</th>
<th>Instructions</th>
<th>Example</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>Enter a single word relating to the topic of interest.</td>
<td>Searching for any reference to “ACAA Meeting,” enter “acaa” or “meeting” not “acaa meeting.”</td>
<td>Keyword searches find only those words most closely linked with the publication. It offers the fewest search references from which to collect.</td>
</tr>
<tr>
<td>Title</td>
<td>Enter a word or words from the title as the words are ordered in the title.</td>
<td>Searching for “Coal Ash Analysis of Powder River Basin Coal,” enter “coal,” or “ash,” or “ash analysis,” or “powder river basin coal,” etc.</td>
<td>From the example, entering “powder river basin ash analysis” will not identify a publication title. The more complete the title entered, the fewer number of related titles from which to choose will appear. Although searching from a limited reference base, as with searching a keyword above, it provides a quicker and greater chance of finding a publication.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Enter the first and/or the last name of a single author.</td>
<td>Searching for “Jane Smith,” enter “Jane,” or “Jane Smith,” or “Smith.”</td>
<td>If it is known there is more than one author, search by each known author separately until the desired publication appears. If the author is known, this option offers a very good chance of finding the publication in a shorter time.</td>
</tr>
<tr>
<td>Source/Publisher</td>
<td>Enter a word or words comprising the name of the organization responsible for generating the publication.</td>
<td>Searching for a list of ACAA publications, enter “acaa,” or “American,” or “American Coal Ash,” etc.</td>
<td>Avoid use of articles and conjunctions, such as “the,” “or,” “and,” etc. Least used of the search options, the results tend to return the most general of listings.</td>
</tr>
<tr>
<td>Abstract Text</td>
<td>Enter a single word relating to a general or specific topic located in a number of publications.</td>
<td>Searching for any publications which references “Mercury” enter “mercury.”</td>
<td>As this search option reviews all provided abstracts, it is the broadest method of search. The content of lengthy abstracts provides information not only on the primary topic of the publication but also peripherally related topics.</td>
</tr>
</tbody>
</table>

Chart 2. Subject Category List Instructions

<table>
<thead>
<tr>
<th>Search Option*</th>
<th>Instructions</th>
<th>Example</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Category</td>
<td>Select a listed category most closely related to the information being sought. Select from the resulting list of publication titles.</td>
<td>Searching for “road base” select “Road and Highway Construction.”</td>
<td>This search option offers a more direct approach to finding information when specific publications are not known.</td>
</tr>
</tbody>
</table>

OTHER ASH INFORMATION SOURCES

The following is a list of online sites providing varying degrees of ash related information for free and/or a fee.

- American Coal Ash Association - www.acaa-usa.org
- American Coal Council - www.americancoalcouncil.org
- American Concrete Institute - www.aci-int.org/general/home.asp
- Canadian Industries Recycling Coal Ash (CIRCA) - www.circainfo.ca
- Center for Applied Energy Research (CAER) - www.caer.uky.edu
- Center for By-Products Utilization - www.uwm.edu/Dept/CBU
- Center for Energy & Economic Development (CEED) - www.ceednet.org/ceed
- Coal Ash Resources Research Consortium - www.undeerc.org/carrc
- Coal Combustion Products Partnership (C2P2) - www.epa.gov/c2p2/index.htm
- European Coal Combustion Products Association (ECOBA) - www.ecoba.com/index.html
- Electric Power Research Institute (EPRI) - my.epri.com/portal/server.pt
• Korean Coal Ash Recycling Association - coash.or.kr/main.html
• National Energy Technology Laboratory (NETL) - www.netl.doe.gov/technologies/coalpower/index.html
• National Ready Mixed Concrete Association - my.nrmca.org/script-content/PsIndex.cfm
• National Research Center for Coal and Energy – West VA University - www.ncce.wvu.edu/lab.cfm
• Portland Cement Association - www.cement.org
• South African Coal Ash Association - www.cneci.org.za/sacaa.htm
• The Ohio State University Extension Program “Online” - ohioline.osu.edu
• U.S. Department of Energy - www.energy.gov
• U.S. Department of Interior - Office of Surface Mining - www.osmre.gov/osm.htm
• U.S. Department of Transportation – Federal Highway Administration - www.fhwa.dot.gov
• U.S. Environmental Protection Agency - www.epa.gov
• U.S. Green Building Council - www.usgbc.org
• Utility Solid Waste Advisory Group (USWAG) - www.uswag.org
• Western Region Ash Group (WRAG) - www.wrashg.org

Conserving our Natural Resources Through the Beneficial Use of CCPs
www.charah.com • 502-245-1353

Analysis by X-Ray Fluorescence Spectrometry

Whole Rock, Fly Ash, Coal Ash, Portland Cement
Chloride in Coal, Fly Ash and Cements

Accuracy and Quick Turn Around Time

Wyoming Analytical Laboratories, Inc.
Denver Division, 1511 Washington Ave.
Golden, Colorado 80401
Phone (303) 278-2446, Fax (303) 278-2439
Call or Inquire at e: walray@aol.com

For all of our Laboratories and Capabilities visit www.wal-lab.com
Ameren’s commitment to environmental stewardship is reflected in our mission statement, core values, and our strategies to achieve excellence. Our support of the beneficial use and recycling of Coal Combustion Products is a critical part of our pursuit of excellence.

Whether you are a contractor searching for an engineered fill product, a manufacturer in need of a mineral filler alternative, or innovator looking to partner in product development, Ameren may be your answer.

If you find yourself in need of ash in the Midwest, give us a call, or visit our website at http://www.ameren.com/afs.
A.W. Oakes & Son, Inc.
2000 Oakes Road
Racine, WI 53406
(262) 866-4574
Fax: (262) 866-1897
Daniel Oakes, President
doakes@awoakes.com
www.awoakes.com
For more than 50 years, A.W. Oakes & Son, Inc. has been providing high quality earthwork construction services including asphalt paving, landfill operations, aggregate material supplier and truck hauling.

Activation Resources Int’l, LLC
407 O’Day Street
Maplewood, MN 55119
(651) 731-3145
Fax: (651) 702-0041
Jan Allozota, President/CEO
jan@activationresources.com
www.activationresources.com
ARI with Energomar of Poland specializes in mechanical activation of FBC fly ash. The technology creates cement substitute, reduces desulfurization sorbent quantity, and makes use of semi-dry FBC desulfurization product.

ADA-ES, Inc.
8100 SouthPark Way, B-2
Littleton, CO 80120
(303) 734-1727
Fax: (303) 734-0330
Michael Durham, President
miked@adaes.com
ADA-ES, Inc. provides innovative and cost-reducing fly gas conditioning technology for coal-fired boiler ESP and baghouse particulate control. ADA-ES products allow industry to meet clean air standards without expensive modifications or replacement of equipment.

AES Puerto Rico
Carr #3 KM 142 P.O. Box 1890
Guayama, PR 00784
(787) 671-4761
Fax: (787) 866-8139
Neil Walington, VP-Business Development
Neil.Walington@aes.com
AES Puerto Rico began operations in 2002 providing 454 MW of coal-fire powered electricity to the PR Electric Power Authority.

Alliant Energy
200 First Street SE P.O. Box 351
Cedar Rapids, IA 52406
(319) 786-7614
Fax: (319) 786-4592
Jesse Nowak, Coal Combustion Products Manager
jessenowak@alliantenergy.com
www.alliantenergy.com
Alliant Energy is an energy holding company serving more than three million customers worldwide. Alliant Energy, headquartered in Madison, Wis., is a Fortune 100 company traded on the New York Stock Exchange under the symbol ‘LNT.’

Ameren Energy Fuels & Services
P.O. Box 66149, MC 611
St. Louis, MO 63166
(314) 554-2340
Fax: (314) 206-1250
Mark Bryant, Managing Executive, CCPs
mbryant@ameren.com
Ameren manages more than 2 million tons of CCPs each year from 10 coal fired power plants operating in Illinois and Missouri. It focuses on increasing the use of CCPs through its continuing positive enterprise initiatives.

American Electric Power
One Riverside Plaza 22nd Floor
Columbus, OH 43215
(614) 223-1246
Fax: (614) 223-2963
Tom Zelina, Director, Civil Engineering
& Geotechnical Services
tzelina@aepon.com
American Electric Power, Columbus, Ohio, owns and operates more than 42,000 megawatts of generating capacity and is the largest electricity generator in the U.S., with 5 million customers in 11 states.

Ash Grove Resources, LLC
1520 SW 41st St.
Topeka KS 66609
(785) 267-1996
Fax: (785) 267-4360
Brady Pryor, President
brady.pryor@ashgroveresources.com
Ash Grove Resources, LLC supplies supplementary cementitious materials, including class C fly ash and cement kiln dust to the concrete and building industries from Nebraska to Texas.

Barzin Mobasher
Arizona State Univ., Dept. of Civil Engr.
MC 5306, Bldg ERC Room 463
Tempe, AZ 85287
(480) 965-0141
Fax: (480) 965-0557
Barzin Mobasher, Assoc. Professor
barzin@asu.edu
Dr. Mobasher, with 30 years industrial and educational experience in the mechanics of solids, specializes in cementitious materials and steel structures, as well as engineering design, concrete materials, numerical methods and structural steel design.

Boral Material Technologies Inc.
43 N.E. Loop 410 Ste. 700
San Antonio, TX 78216
(210) 349-4069
Fax: (210) 349-8512
Craig Plank, Vice President Utilities Relations
craig.plank@boral.com
www.boral.com
BMTI processes and markets more than 4 million tons of CCPs annually. It leads the CCP industry through development of product innovations, marketing, technology, and CCP transportation and distribution.

BPC-NA
P.O. Box 14597
Pittsburgh, PA 15234
(412) 344-4133
Fax: (412) 344-4614
John College, Special Projects Manager
jcollegeformula@aol.com
www.BPC-NA.com
BPC, the world’s leading producer of gypsum wallboard, is the #3 supplier in the U.S. BPC-NA’s two U.S. plants consume more than 2.2 million tons of synthetic gypsum.

Brens ES
1216 Grandview Ave
Pittsburgh, PA 15211
(412) 431-4499
Fax: (412) 431-4104
Charles Lockert, VP Sales & Marketing
clockert@breenes.com
www.breenes.com
Breen Energy is an innovative technology company specializing in integrating technologies for reducing LOI and improving fly ash quality. Breen can offer total solutions to both electric generating stations and ash marketers.

Charah, Inc.
Unit M, Suite 100
307 Townpark Circle
Louisville, KY 40243
(502) 245-1353
Fax: (502) 245-7398
Charles Price, President
cprice@charah.com
Charah is an ash management business, handling 2.25 million tons of coal combustion by-products annually. With an in-depth knowledge of the properties of CCPs, its ash handling capabilities are supplemented by routine development of markets for usable by-products.

Constellation Energy
2030 Brandon Shore Road
Baltimore, MD 21226
(410) 787-5471
Fax: (410) 787-5577
John Jeffcoat, General Supervisor - Fuel and Ash
john.Jeffcoat@constellation.com
www.constellationenergy.com
Ash portfolio consists of sales to ready mix concrete, flowable fill, structural fills and reclamation projects.

Cumberland Elkhorn Coal & Coke
P.O. Box 878
Harlan, KY 40831
(606) 573-6300
Fax: (606) 573-6315
CV Bennett, Vice President
cvbennett@ce-coal.com
www.ce-coal.com
Cumberland Elkhorn Coal & Coke is a coal brokerage concern operating in Kentucky and Ohio. It originates and arranges for coal transportation options, specializing in high quality, low sulfur steam and stoker coals.

Dairyland Power Cooperative
3251 East Avenue South
La Crosse, WI 54601
(608) 787-1351
Fax: (608) 787-1390
David Leddy, Lead Chemist
dle@dairynet.com
Dairyland provides wholesale electricity to 25 member distribution cooperatives and 20 municipal utilities meeting the needs of more than 500,000 people. It has provided low-cost, reliable electrical energy and services in the upper Midwest for over 62 years.
Don’t let ash—and opportunity—go to waste.

Disposing of fly ash isn’t your only option any longer. Now you can economically process it to meet the growing demand for recycled material. The DustMASTER system successfully conditions fly ash of all kinds—including ash from Powder River Basin, low sulfur coal and FBC. At the heart of the system is the legendary Turbin® Mixer. It provides you with precise control over the mix, batch after batch, to produce a high-quality, stabilized material. And the DustMASTER system is guaranteed to work. Turn the problem of ash into a profit-making opportunity. Contact DustMASTER for a complete equipment solution engineered to your needs.

Ask about a free test of materials.

190 Simmons Avenue
P.O. Box 10
Pewaukee, WI 53072
800-75-MIXER (800-756-4937)
262-691-3184 (F)
www.dustmaster.com
info@dustmaster.com

Don’t let ash—and opportunity—go to waste.

LB INDUSTRIAL SYSTEMS, LLC.

Engineering ● Equipment & Systems ● Installation

BULK MATERIAL HANDLING AND STORAGE SPECIALISTS

Your turnkey source for Storage Solutions from 40 to 40,000 Tons…

- Silos
- Tanks
- Domes
- Flat Storage
- Movable “Easy Terminals”
- Loading and Unloading

www.lbindustrialsystems.com ● Phone (210) 344-2009
2006 Membership Directory

Dean Golden
5540 Abington Drive
Newark, CA 94560
(510) 791-1875
Dean Golden,
Consulting Civil Engineer
dean.golden@pacbell.net

Don Saylak
Texas A&M University Civil Eng.
Dept. College Station, TX 77843
(979) 845-9962
Fax: (979) 458-0780
Don Saylak, Professor Emeritus
d-saylak@tamu.edu

Jerry Setliff , President/CEO
30 Ash at Work
Summer 2006
(361) 241-8851
(704) 382-7721
(510) 791-1875
(361) 241-8856
(704) 382-4014

Full Circle Solutions, Inc.
665 Molly Lane, Ste. 100
Woodstock, GA 30189
(770) 517-7017
Fax: (770) 517-9689
Robert Waldrop, Vice President
bwaldrop@csi.biz www.csi.biz

DYNEGY Corporation
2828 N. Monroe St.
Decatur, IL 62526
(217) 476-3927
Fax: (217) 876-7475
Chris Williams,
Environmental Professional
charles.williams@dynergy.com

Full Circle Solutions, Inc. provides coal combustion product management services in the Southeast U.S. to utilities, independent power producers and other industries specializing in construction and agricultural products.

E. ON U.S. Services, Inc
220 West Main Street, 4th floor
Louisville, KY 40202
(502) 627-3154
Fax: (502) 627-3243
Kemeth Tapp,
By-Products Coordinator
kemeth.tapp@e-on.us
E. ON US (formerly LG&E) is an energy services company serving 840,000 electricity customers in Kentucky and Virginia with a generating capacity of 7,300 MH.

Electric Energy, Inc.
P.O. Box 165
Joppa, IL 62953
(618) 543-7531
Fax: (618) 543-6607
Michael Mercer,
Chemist - Special Projects
mikemercer@electricenergyinc.com

Electric Energy, Inc. produces a high quality class “C” fly ash and bottom ash which are used in the production of cement and concrete. In 2004, EEI sold a combined 228 thousand tons of ash material.

Gerard Gambs
1725 York Ave. Suite 33C
New York, NY 10128
(212) 427-3982
Gerard Gambs, Consulting Engineer
Mr. Gambs, has over 60 years experience in mining, fuels and energy programs, to include industrial and educational positions involving coal, uranium, oil and gas; cogeneration; power plant projects; use of fly ash in concrete and concrete products.

Gerard Gambs
44 Union Blvd. Ste. 300
Lakewood, CO 80228
(303) 980-0540
Fax: (303) 985-2028
Ron Jorgenson, Associate
rjorgenson@golder.com

Golder Associates, Inc.
provides engineering services in the United States.

Headwaters Resources
157 W. Shadowpoint Circle
Woodlands, TX 77381
(281) 367-2805
Fax: (281) 367-1713
Jerry Smith,
Vice President, Central Region
jsmith@headwaters.com

Headwaters is the nation’s largest manager and marketer of coal combustion products. Headwaters markets CCPs for traditional applications, manufactures CCP-based products, and develops technologies to improve CCP quality.

HOLMUS (US) Inc.
6211 Ann Arbor Rd.
Dundee, MI 48131
(734) 529-4186
Fax: (734) 529-4117
Barry Descheniaux,
Manager, Product Development
barry.descheniaux@holcim.com

Holcim (US) Inc. is a wholly-owned subsidiary of Holcim Ltd, and is one of the largest suppliers of Portland and blended cements and related mineral components in the United States.

Indianapolis Power & Light Co.
One Monument Circle, Rm. 771
Indianapolis, IN 46204
(317) 261-8792
Fax: (317) 360-3602
Dana Meier,
By-products Administrator/Quality Manager
dana.meier@apl.com

IPL provides retail electric service to more than 440,000 residential, commercial and industrial customers in Indianapolis, as well as portions of other Central Indiana communities surrounding Marion County.

Ishwar Murarka
2225 Beeste Lane
Raleigh, NC 27614
(919) 844-9890
ishwar.murarka@earthlink.net

Ishwar Murarka, Consultant
Dr. Murarka, a consultant to government and electrical utilities, specializes in coal ash research projects involving ground water migration of coal ash constituents emphasizing among others ash related heavy metal contaminants.
Kansas City Power & Light Co.
P.O. Box 418679
Kansas City, MO 64141
(816) 556-2108
Fax: (816) 556-2047
Fredrick Gustin, CCP Analyst
fred.gustin@kcpl.com
www.kcpl.com
Kansas City Power & Light Company is a leading regulated provider of electricity in the Midwest. Its parent company is Great Plains Energy Incorporated (NYSE:GXP) of Kansas City, MO.

Lafarge NA
600 SW Jefferson St., Ste. 302
Lee’s Summit, MO 64063
(816) 251-2147
Shrief Kabis, Regional Product Manager - Ash
shrief.kabis@lafargenorthamerica.com
www.lafargenorthamerica.com
Lafarge NA is the largest diversified construction materials company and supplier of cement, aggregates and concrete, and other materials for residential, commercial, institutional and public works construction in the United States and Canada.

LB Industrial Systems, LLC
12508 Jones Maltsberger Rd Suite 100
San Antonio, TX 78247
(210) 344-2009
Fax: (210) 344-1121
Robert Lister, President
ralister@swbell.net
www.lbindustrialsystems.com
LB Industrial, a design/build company provides engineering studies, turnkey project delivery for ash and bulk material conveying, processing and storage systems, with experience in operations and maintenance, and power, ash marketing, and cement industry projects.

Lehigh Cement Company
7600 Imperial Way
Allentown, PA 18195
(610) 366-4761
Fax: (610) 366-4616
Mark Stillwagon, Manager Purchasing/Materials
mstillwagon@lehighcement.com
Lehigh Cement Company produces high quality Portland, blended and specialty cements and construction materials for numerous highway, architectural, industrial and marine applications.

LMS Contracting, Inc.
6515 W. 500 N.
Madison, IN 47250
(812) 273-3540
Fax: (812) 273-1651
Ryan Spann, Manager
ryan@lmscontracting.com
LMS’s primary business is heavy excavation. Contracting expertise includes landfill development and closure, coal mine reclamation, coal ash handling, industrial site development, road construction and overburden removal.

Lower Colorado River Authority
6549 Power Plant Road
La Grange, TX 78945
(979) 249-8426
Fax: (979) 249-8924
Anne Tierce, Waste Coordinator
anne.tierce@lcra.org
LCRA was created in 1934 by the state of Texas to provide service to all or part of 58 Texas counties. It operates three fossil-fueled power plants of which Fayette Power Project is one. Fayette has a generating capacity of 1690 MW.

McDonald Farms Enterprises, Inc.
7247 East County Line Road
Longmont, CO 80501
(303) 772-4577
Fax: (303) 442-5706
Randall McDonald, General Manager
mcfarms3@aol.com
Colorado All Waste Management, certified WBE, OBE, is a division of McDonald Farms providing roll-off services for Colorado and Wyoming manufacturing and processing plants, emergency clean-up, special waste removal, sludge boxes, construction sites, and asbestos removal transport.

Mirant Mid-Atlantic
Mid-Atlantic - Chalk Point, LLC
8711 Westphalia Road
Upper Marlboro, MD 20774
(301) 669-8035
Patrick Miglio, Group Leader, Environment, Safety and Health Compliance
patrick.miglio@mirant.com
Mirant, with over 22,000 MW of generating capacity, is one of the top power producers in the US. It provides energy products and services to utilities, electric co-ops, marketers, aggregators, producers, and large industrial customers.
Montana-Dakota Utilities Co.
400 North Fourth Street
Bismarck, ND 58501
(701) 229-7657
Fax: (701) 222-7845
Jason Boeckel,
Senior Environmental Scientist
jason.boeckel@mdus.com

Pittsburgh Mineral & Environmental Technology, Inc.
700 Fifth Avenue
New Brighton, PA 15066
(724) 834-5000
Fax: (724) 834-5353
William Sutton, Exec. VP
bsutton@pmet-inc.com

Progress Energy
410 S W almgton Street
PEB 10A
Raleigh, NC 27602
(919) 546-7483
Fax: (919) 546-2590

Public Service Enterprise Group
243 West Jefferson Street
Gibbstown, NJ 08027
(856) 224-1638
Fax: (856) 224-1574
Allert Fralingr, Manager, Materials Resource Recovery
allbert.fralingr@psg.com

Piano State Generating Company LLC
701 Market St., Ste. 781
St. Louis, MO 63101
(314) 342-7873
Fax: (314) 342-7907
Colin Kelly, President
colin.m.kelly@peabodyenergy.com

Rico Bravo Jasins
3100 Thunder Valley Court
Lincoln, CA 95648
(916) 645-3388
Fax: (916) 645-9209
George Nowland, Project Manager
gnowland@bbroklin.com
Rico Bravo, with four California power plants, produces 114 MWs of electricity. These include two coal-fired cogeneration facilities and two biomass-fired electrical generators. It successfully uses all of its coal combustion products (CCPs) for beneficial use within California.

Salt River Materials Group
8800 E. Chaparral Road, Ste. 155
Scottsdale, AZ 85250
(480) 850-5757
Fax: (480) 850-5758
Dale Dullas,
VP Coal Combustion Products & Logistics
ddullas@srmaterials.com
www.srmaterials.com
Salt River Materials Group markets a variety of construction materials including normal and lightweight aggregates, PHOENIX CEMENT(TM) portland and blended cements, and a full line of CCPs in the Southwestern U.S.

Santee Cooper
1 Riverwood Drive
P.O. Box 2946101
Moncks Corner, SC 29461
(843) 781-8000
Fax: (843) 761-4114
Thomas Edens, Administrator,
Combustion Product Utilization
tfeden@santeecooper.com
www.santeecooper.com
Santee Cooper, with 2800 coal fired MWs and 1200 more under construction, is the nation's third largest public utility serving 1.6 million South Carolinians. It provides CCPs to the cement and concrete industries, as well as synthetic gypsum to agriculture.

Seminoles Electric Cooperative, Inc.
P.O. Box 272000
Tampa, FL 33688
(813) 739-1213
Fax: (813) 264-7906
James Frau, Manager, Environmental Affairs
jfrau@semenelectric.com
Seminoles is a wholesale generation and transmission co-op providing the energy needs of 10 member distributors serving 1.6 million Florida customers. With 1800 MW of capacity, 2003 member coincident peak demand was 4009 MW with sales of 14,956 MWH. office construction.
Seperation T echnologies LLC
6071 Catawba Road
Troutville, VA 24175
Fax: (540) 966-1623
Randy Dunlap, VP CCPs
rndunlap@titanamerica.com
Separation Technologies is a leader in total CCP management with expertise in marketing, utilization, transportation and landfill management. STI also offers the leading carbon and ammonia removal systems in the industry to customize CCP management processes.

South Carolina Electric & Gas
111 Research Drive, K-61
Columbia, SC 29203
(803) 217-7461
Fax: (803) 933-8064
Ted Frady, Sr Engineer, Ash Utilization & Disposal
tfrady@scana.com
South Carolina Electric and Gas (SCE&G) is an investor owned, regulated utility, with an electric generating capacity of approximately 5000 MW. SCE&G, based in Columbia, serves 570,000 South Carolina customers.

Southern Company
600 N. 18th St., 14N-8162
Birmingham, AL 35291
(205) 257-7155
Fax: (205) 257-0410
Xia Lin, Fuel Environmental and Compliance Manager
xlia@southernco.com
Based in Atlanta, Southern Company is one of America’s largest generators of electricity. It supplies energy to a 120,000 square-mile service territory spanning most of Georgia and Alabama, southeastern Mississippi, and the panhandle region of Florida.

Southern Illinois Power Cooperative
11543 Lake of Egypt Road
Marion, IL 62959
(618) 964-1448
Fax: (618) 964-1867
Richard Myott, Planning & Environmental Department Manager
rmyott@sipower.org
SIPC is a generation & transmission cooperative burning 1.2 million tons per year of Illinois coal. SIPC has cyclone boiler slag, Class F flyash and Calcium Sulphite scrubber sludge as well as CFB alkaline bed ash and flyash available.

Southern Illinois University
405 West Grand MC 4623
Southern Illinois University at Carbondale
Carbondale, IL 62901
(618) 536-5521
Fax: (618) 453-7346
John Mead, Director
jmead@siu.edu
The Coal Research Center established in 1974, provides a substantial coal research, education and service program to stimulate and coordinate innovative efforts to improve the efficiency of coal mining and coal use.

Sphere One, Inc
601 Cumberland, Building 32
Chattanooga, TN 37404
(423) 629-7160
Fax: (423) 678-0614
Kip Clayton, Materials Manager
kclayton@sphereone.net
Sphere One, in addition to being an international and domestic provider of lightweight spherical filler composite materials, including cenospheres and microspheres, provides related technical and product information to its customers.

Sunflower Electric Power Corporation
2025.75 W. St. John Street
P.O. Box 1649
Garden City, KS 67846
(620) 272-5467
Fax: (620) 272-5467
Jim Carlson, Supervisor of Environment
jcarlson@sunflower.net
Sunflower Electric Power Corporation is a Cooperative located in Holcomb, Kansas which consists of 1 coal fired and 5 gas-fired generation plants, for a total generation of 548 megawatts.

The course is empty, the fish are biting and here you are trying to work. People. Would you rather be golfing or repairing valves? The choice is yours. You’re Everlasting Valves. Replacing Dilapidated Valves. Rotating Discs, Rotating Latch, Replace your existing valve that is too old or too big. Choose the Everlasting Valves for the best quality- low maintenance and reliability. Available in various Types and Sizes.

The unique valve has an advantage where other valves require more weight or material for the same size or function. The valve is designed to be lightweight and durable, making it ideal for a variety of industries. With Everlasting Valves, you can ensure consistent and reliable performance every time. The valve is designed to handle different types of media and pressures, making it ideal for various applications. Whether you need a valve for water, oil, or gas, Everlasting Valves has a solution for you.

Everlasting Valve Company
108 Somonour Court, South Plainfield, NJ 07080
(732) 523-8100
Fax: (732) 523-8181
www.everlastingvalve.com
www.8valve.com

Summer 2006 Ash at Work • 33
2006 Membership Directory

Synthetic Materials
P.O. Box 67245
244 Old Highway 149
St. Pete Beach, FL 33706
(727) 367-0400
Fax: (727) 367-0402
John Glasscock, President
jrg@synmat.com

Tennessee Valley Authority
Tribo Flow Separations
1525 Bull Lea Road, Suite 10
Lexington, KY 40511
(859) 259-0010
Steve Patricks, Principal Engineer
steven_patrick@urscorp.com
www.urscorp.com

University of Kentucky-Caer
2540 Research Park Drive
Lexington, KY 40511
(859) 257-0272
Fax: (859) 257-0360
Thomas Robl, Assoc. Director
robl@caer.unc.edu
The Environmental and Coal Technol-
ogy Group investigates coal combust-
ion-by-product utilization, generating
ideas on the utilization, handling, stor-
age and disposal of CCPs. This group
also works on coal cleaning, prepara-
tion, pelletization and binding.

Trans-Ash
617 Shepherd Drive
P.O. Box 15396
Cincinnati, OH 45215
(513) 554-6147
Fax: (513) 554-6147
Robert Gerbus, President
bgerbus@transash.com
www.transash.com
Trans Ash is a leading ash man-
agement contractor to the power
generation industry. Trans Ash ser-
ices include: CCP utilization, pond
cleanup, landfill management,
construction and power plant services.
Additional services include: bottom
ash and boiler slag marketing.

Tribu Flow Separations
1525 Bull Lea Road, Suite 10
Lexington, KY 40511
(859) 259-0011
Fax: (859) 259-0010
John Stencil, President
john@triboflow.com
www.triboflow.com
Tribo Flow Separations provides so-
lutions for purifying dry, fine-sized
powders and for measuring the foam
capacities of powders and liquids.
Using its gas transport, triboelectric
purification (TEP®) technology and
automated foam index technique
(AFIT®), TFS also offers consulting
and services, focused and collabora-
tive R&D, and equipment sales.

Trans-Ash
617 Shepherd Drive
P.O. Box 15396
Cincinnati, OH 45215
(513) 554-6147
Fax: (513) 554-6147
Robert Gerbus, President
bgerbus@transash.com
www.transash.com
Trans Ash is a leading ash man-
agement contractor to the power
generation industry. Trans Ash ser-
ices include: CCP utilization, pond
cleanup, landfill management,
construction and power plant services.
Additional services include: bottom
ash and boiler slag marketing.

Tribu Flow Separations
1525 Bull Lea Road, Suite 10
Lexington, KY 40511
(859) 259-0011
Fax: (859) 259-0010
John Stencil, President
john@triboflow.com
www.triboflow.com
Tribo Flow Separations provides so-
lutions for purifying dry, fine-sized
powders and for measuring the foam
capacities of powders and liquids.
Using its gas transport, triboelectric
purification (TEP®) technology and
automated foam index technique
(AFIT®), TFS also offers consulting
and services, focused and collabora-
tive R&D, and equipment sales.

The Ohio State University
470 Hitchcock Hall
2070 Neil Avenue
Columbus OH 43210
(614) 688-3408
Fax: (614) 292-3780
Tanumjit Butalia, Research Scientist
butalia.1@osu.edu
The CCPEP, co-sponsored by state and
federal agencies, utilities, and trade
groups, promotes the knowledge of
productive and proper application of
CCPs as useful raw materials in high-
ways, construction, mine reclamation,
mining, manufacturing, and agricultural uses.

The SEFA Group
217 Cedar Road
Lexington, SC 29073
(803) 520-9000
Fax: (803) 520-9001
Jimmy Knowles,
Vice President - Market Development
jknowles@seafgroup.com
The SEFA Group develops and
maintains mutually beneficial rela-
tionships within the utility and con-
struction industries to maximize the
use of coal combustion products in
environmentally friendly ways.

University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202
(701) 777-5261
Fax: (701) 777-5181
Debora Phlypoof-Hassett,
Program Manager
dphlypoof@underc.org
www.underc.org/carc
EERC is a research, development,
demonstration, and commercial-
ization facility dedicated to mov-
ing promising technologies out of
the lab and into the marketplace
to produce energy cleanly and effi-
ciently, minimizing environmental
impacts and conserving precious
natural resources.

USG Corporation
1375 Euclid Avenue, Suite 600
Cleveland, OH 44115
(216) 622-2455
Fax: (216) 622-2464
Steve Patricks, Principal Engineer
steven_patrick@urscorp.com
www.urscorp.com
USG Corporation provides engineer-
ing consulting to utilities that gen-
erate CCBs including ash, scrubber
byproducts and gasification byprod-
ucts. USG is an expert in the areas
of management, disposal and benefi-
cial reuse of CCPs.

West Virginia Water Research Institute
Evansdale Campus
NRCC Bldg., #202
P.O. Box 6064
Morgantown, WV 26502
(304) 293-2867
Fax: (304) 293-7822
Tamara Vandivort,
Program Coordinator
tvandivo@wvu.edu
WWWRI serves as a statewide vehicle
for performing research related to
water issues. It is also the coordinat-
ing body for the National Mine Land
Reclamation Center, Combustion By-
products Recycling Consortium and
numerous other technical groups.

Western Research Institute
365 North 9th Street
Laramie, WY 82070
(307) 721-2386
Fax: (307) 721-2256
Alan Bland, Program Manager
abland@wyo.edu
WRI’s programs develop innovative
technologies providing technical
services to the ash management
and utility industries. Projects are in
process to develop new, large-volume and
niche uses for ash.

Xcel Energy
1099 18th Street, Ste. 3000
Denver, CO 80202
(303) 308-2736
Fax: (303) 308-2738
Gerry Zimmerman,
Regional Manager
gerry.zimmerman@xenlt.com
Xcel Energy is the fourth largest
combination electric-gas utility in the
U.S. Based in Minneapolis, the
company operates 19 coal-fired
plants and serves in 12 mid-western
and western states.
The South African Coal Ash Association proudly presents the International Conference on Coal Ash. This year’s theme, Coal Ash: A Valuable Resource, follows the acclaimed conferences of 1987 and 1994.

Over the past decade fundamental knowledge has grown, giving rise to technological innovations and new market opportunities. We can now recover unprecedented energy from coal. The environmental impacts of combustion are significantly lower. Residues offer opportunities for applications that avoid disposal. Participants and guests will come away with a broad awareness of scientific progress, and a fresh perspective.

ACAA Members: This event offers market prospects for your technologies abroad. The South African energy sector is undergoing significant growth. Additional capacity will be brought on-line by Eskom over the next four years: two large 3600 MW stations are planned. This expansion takes place in the context of growing environmental concern about coal-based power generation.

For more information please visit our website www.coalash.co.za; or contact Richard Kruger at richonne@mweb.co.za

Trans-Ash leads the industry in CCP management and utilization.
- Landfill management
- Econo-Fill® structural fill program
- Active ash pond excavation
- Ash system construction
- CCP Utilization
- Processed boiler slag and bottom ash products

Trans-Ash now offers a broad range of Power Plant Services:
- Coal handling
- Fly ash silo management and operation
- Scrubber materials handling
- Plant labor resources

Contact Trans-Ash for more information on CCP Management or Power Plant Services.

513-733-4770
www.transash.com
INDEX TO ADVERTISERS

Ameren Energy Fuels & Services 27
Boral Material Technologies Inc IFC
Charah Inc ... 26
CIRCA .. 11
Columbia Tec Tank .. 24
Dominion Ash Limited ... 17
DTE .. 4, 5, 16
DustMaster Enviro Systems .. 29
Dwyer Instruments, Inc .. 10
Everlasting Valve Co .. 33
FLSmidth Inc ... 6
Full Circle Solutions, Inc .. 31
GAI Consultants, Inc .. 27
GATX Rail ... 21
Golder Associates .. 12
Headwaters Resources .. OBC

LaFarge North America Inc ... IBC
LB Industrial Systems, LLC .. 29
McDonald Farms Enterprises, Inc 20
Mineral Resource Technologies, Inc 13
Pozzi-Tech Inc .. 26
Progress Materials, Inc .. 16
PSI .. 20
Salt River Materials Group .. 36
The SEFA Group ... 3
Separation Technologies, LLC 9
Simem America .. 15
Synthetic Materials .. 23
Trans Ash Inc .. 35
Western Region Ash Group .. 27
Wyoming Analytical Labs ... 26
Lafarge is your solutions provider for CCP utilization

- Over fifty years of acquired experience and technical expertise in the ash business
- One of the largest suppliers, and users of concrete-quality fly ash and other CCPs
- A leading consumer of fly ash, bottom ash, and gypsum for use in raw feed
- One of the largest consumers of synthetic gypsum for use in wallboard
- A leading supplier of CCPs for geotechnical applications

Bottom line: Lafarge is an ideal partner for marketing your CCPs

To learn more, contact Shrief Kabis at 1-800-482-5749 or visit us at lafargenorthamerica.com

Materials for Building our World

© 2006 Lafarge North America Inc. Herndon, VA
AMERICA’S LEADING
COAL ASH MANAGER and MARKETER

DEVELOPING TECHNOLOGIES
for Fly Ash Quality
- Ammonia Removal
- Carbon Fixation

INTRODUCING PRODUCTS
for Increasing Ash Utilization
- FlexCrete™ Aerated Concrete
- Mortars, Stuccos and Concrete Blocks
- Innovative solutions for FGD material and off-spec ash

EXPANDING SYSTEMS
for Coast to Coast Marketing
- Nationwide network of source locations and terminals marketing millions of tons annually for traditional concrete production

PROVIDING SERVICES
for Coal Ash Generation
- Landfill design, construction, operation and closure
- Environmental site assessment and permitting
- Utility and industrial equipment and site maintenance

HEADWATERS
RESOURCES
1-888-236-6236 - www.flyash.com